Terahertz quantum plasmonics at nanoscales and angstrom scales
نویسندگان
چکیده
منابع مشابه
Terahertz plasmonics
Semiconductor microstructures can be used to tailor the dispersion properties of surface plasmon polaritons in the terahertz (THz) frequency range, and therefore can be used as important building blocks for terahertz optical devices. The physical principles of three structures are discussed: plasmonic second-order gratings, designer (spoof) surface plasmon polariton structures, and channel pola...
متن کاملFrontiers in terahertz sources and plasmonics
Terahertz (THz) radiation offers researchers many intriguing possibilities, ranging from fundamental science through to applications in communications, noninvasive imaging, and other areas. The THz region (~0.1 THz to ~10 THz) is often described as the last frontier of the electromagnetic spectrum because of the relatively low maturity level of components and systems that operate in this region...
متن کاملGraphene plasmonics for tunable terahertz metamaterials.
Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz f...
متن کاملActive quantum plasmonics.
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is ...
متن کاملOptical and Terahertz Energy Concentration on the Nanoscale in Plasmonics
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanophotonics
سال: 2020
ISSN: 2192-8614
DOI: 10.1515/nanoph-2019-0436